

Ahsanullah University of Science and Technology

Department of Electrical and Electronic Engineering

LABORATORY MANUAL

FOR

ELECTRICAL AND ELECTRONIC SESSIONAL COURSES

 Student Name :

 Student ID :

Course No. : EEE 4134

Course Title : VLSI I Lab.

For the students of

Department of Electrical and Electronic Engineering

4th Year, 1st Semester

Contents

Lab
No.

Title Page

0 Introductory Lab: Logging into Cadence Server, Tool Setup, Cell

Library Creation, Introduction to Custom IC Design flow

1

1 Introduction to Virtuoso Schematic Editor, Creating Inverter

schematic, Performing transient simulation of Inverter schematic,

Power and delay measurement of designed inverter for different

process corners

8

2 DC sweep, Parametric sweep and Symbol creation of inverter

29

3 Layout of an Inverter using Virtuoso L

40

4 DRC, LVS, RCX and Post-layout simulation of an inverter

60

5 Schematic Driven Layout of a 2-input NAND gate using Virtuoso

Layout Suite Editor XL

70

6 Introduction to Hierarchical Design (2-input AND gate using 2-input

NAND gate and an inverter)

81

7 Introduction to Verilog HDL and Quartus II

85

8 Combinational Logic circuit design in Verilog HDL using Quartus II

94

9 RTL synthesis and Sequential Logic Circuit design in Verilog HDL

using Quartus II

97

 References and Further Readings 100

EEE 4134 VLSI I Sessional

 Page 1

EEE 4134 VLSI I Laboratory

Lab 0 (Introductory Lab)

Logging into Cadence Server, Tool Setup, Cell Library Creation, Introduction

to Custom IC Design flow

Objectives:

 To login, start a shell tool and start the Cadence Virtuoso software

 To learn about PDK and add the PDK library to the Library Manager

 To create a working library and to get familiar with technology

 To be familiar with Custom IC Design flow

Logging in, starting a shell tool, and starting the Cadence Tool Suite

1. Find Desktop shortcut icon for XLaunch. Double-click on it. Click Next, Next, Next, Finish (in

that order) in the windows that pop-up one after another.

After it starts, you will see the Xming icon at the bottom right corner of your Desktop screen.

2. Find icon for Putty. Double click on it to open it. ‘Putty Configuration’ window will pop-up.

3. Select VLSI_LAB under ‘Saved Sessions’ category. Click Load. The window will look like the

following one:

Click Open. A Security Alert window may pop-up. Click Yes.

EEE 4134 VLSI I Sessional

 Page 2

4. Now you will see a Terminal window which prompts you for login.

5. Log in to your workstation using user ID and password. Your user name and your password will

be your student ID. When you are typing your password, the command window will not display

the characters you type in, so make sure you are typing the right password. After logging in to your

account, Terminal window should look like the following:

6. Type csh and press ‘Enter’ key.

Then type source cshrc_q and press ‘Enter’ key.

The following message will be displayed in the Terminal window:

Welcome to Cadence tools Suite

That means you can use Cadence tools now.

7. Go to your working directory by typing: cd cic

8. Type virtuoso&

A sample command prompt screen is shown below:

9. Virtuoso® Command Interpreter Window (CIW) appears at the bottom of the screen. From

the CIW menus, all Cadence main tools, online help and options can be accessed. In the window

area, all kind of messages (info, errors, warnings, etc) generated by the different Cadence tools

appear. You can also introduce commands.

EEE 4134 VLSI I Sessional

 Page 3

Another window ‘What’s new in IC6.1.6 Overview’ appears too. Execute FileClose and Do

Not Show Again and this window will not appear the next time you open Virtuoso.

NOTE: You have to perform these steps above in every class where Cadence tools will be used.

The following figure summarizes the steps:

Start XLaunch

Start Putty

Open VLSI_LAB session

Login to server

Type the commands one

by one and press Enter:

 csh

 source cshrc_q

 cd cic

 virtuoso&

EEE 4134 VLSI I Sessional

 Page 4

Custom IC Design Flow

The following figure shows the basic design flow of a custom IC design, together with the Cadence

tools required in each step:

Design Specifications

Schematic Entry

Simulation

OK?

Layout Design

Layout Verification

OK?

Parasitic Extraction

Post-Layout

Simulation

OK?

Format Conversion

(CIF, GDS II)

Fabrication

Measurements

Cadence

Tools

Virtuoso Schematic Editor L

ADE L (Spectre)

Virtuoso Layout Editor L/XL

Assura DRC and LVS

Quantus QRC

ADE L (Spectre)

Yes

Yes

Yes

No

No

No

First, a schematic view of the circuit is created using Cadence Virtuoso Schematic Editor L.

Then, the circuit is simulated using Cadence Analog Design Environment (ADE L). Different

simulators can be employed; some sold with the Cadence software (e.g., Spectre) some from other

vendors (e.g., HSPICE) if they are installed and licensed.

Once circuit specifications are fulfilled in simulation, the circuit layout is created using Virtuoso

Layout Editor L. The resulting layout must verify some geometric rules dependent on the

EEE 4134 VLSI I Sessional

 Page 5

technology (design rules). For enforcing it, a Design Rule Check (DRC) is performed. Optionally,

some electrical errors (e.g. shorts) can also be detected using an Electrical Rule Check (ERC).

Then, the layout should be compared to the circuit schematic to ensure that the intended

functionality is implemented. This can be done with a Layout Versus Schematic (LVS) check. All

these verification tools are included in the Assura software in Cadence.

Finally, a netlist including all layout parasitics should be extracted using Quantus QRC tool, and a

final simulation of this netlist should be made. This is called a Post-Layout simulation, and is

performed with the same Cadence simulation tools.

Once verified the layout functionality, the final layout is converted to a certain standard file format

(GDSII, CIF, etc.) depending on the foundry using the Cadence conversion tools.

Learning fundamentals of PDK and adding PDK library to the Library Manager

Cadence is an Electronic Design Automation (EDA) environment that allows integrating in a single

framework different applications and tools (both proprietary and from other vendors), allowing to

support all the stages of IC design and verification from a single environment. These tools are

completely general, supporting different fabrication technologies. When a particular technology is

selected, a set of configuration and technology-related files are employed for customizing the

Cadence environment. This set of files is commonly referred as a process design kit.

All VLSI designs start with a Process Design Kit known briefly as PDK. A PDK contains the

process technology and needed information to do device-level design in the Cadence Design

Framework II (DFII) environment.

Throughout the labs we will use a generic, foundry independent 90nm CMOS mixed-signal process

kit developed by Cadence. We will call it generic PDK 90 nm briefly as gpdk090. A PDK contains

all the necessary design and technology data to successfully design and simulate a VLSI chip on a

particular foundry. The foundry provides the necessary technological data, design rules, and the

device models. Also PDK contains schematic symbols with all necessary views, as well as device

extraction rules for Layout versus Schematic (LVS) check. It also provides parasitic extraction

rules.

Creating a library and attaching technology to library

All the entities in Cadence are managed using libraries, and each library contains cells. Each cell

contains different design views (the structure is similar –and physically corresponds - to a directory

(library) containing subdirectories (cells), each one containing files (views). Thus, for instance, a

certain circuit (e.g. an inverter) can be stored in a library, and such library can contain the different

logic blocks (basic gates, flip-flops, registers, etc) stored as cells. Each block (cell) contains

different views (schematic, layout, symbol, etc.).

EEE 4134 VLSI I Sessional

 Page 6

There are usually three types of libraries:

 A set of common Cadence libraries that come with the Cadence software containing basic

components, such as voltage and current sources, R, L, C, etc. (e.g. analogLib).

 Libraries that come with a certain design kit (e.g. gpdk090) and that are related to a certain

technology (e.g. transistors with a certain model attached, etc).

 User libraries; where the user stores its designs. These designs employ components from the

Cadence/design kit libraries.

It is recommended that you use a library to store related cell views; e.g., use a library to hold all the

cell views for a single project (that can involve a complete chip design). In our example, we are

going to create a new library for our design and attach it to desired technology library.

1. In the CIW, execute FileNewLibrary.

2. The ‘New Library’ form appears. In the name field of the New Library type mylib or any name

of your choice.

3. Select Attach to an existing technology library and click OK. ‘Attach Library to Technology

Library’ window will appear.

EEE 4134 VLSI I Sessional

 Page 7

4. Select gpdk090 technology library and click OK. This will be the technology chosen for your

design (that you will employ eventually for fabrication). Now all the designs made in this library

are technology-dependent (e.g., the schematic MOS symbols have by default the model for this

technology, the available layout layers correspond to this technology, etc.).

5. In the CIW, the following message will appear:

EEE 4134 VLSI I Sessional

 Page 8

EEE 4134 VLSI I Laboratory

Lab 1

Introduction to Virtuoso Schematic Editor, Creating Inverter schematic,

Performing transient simulation of Inverter schematic, Power and delay

measurement of designed inverter for different process corners

Objectives:

 To learn how to draw schematic of basic logic gates in Cadence Virtuoso

 To learn how to perform transient simulation of logic gates

 To learn about process corners and their effects on delay and power dissipation

 To learn how to measure power dissipation and propagation delay of logic gates

Schematic Entry: Creating a Schematic cell view

In this exercise, you will learn how to enter simple schematic and run a simulation to perform

timing simulation of an inverter designed using gpdk090 technology.

1. In the Command Interpreter Window (CIW), execute FileNewCellview. Set up the ‘New

File’ form as follows:

Library: mylib, Cell: inverter, View: schematic, Type: schematic, Application: Open with:

Schematics L

2. Click OK when done. The following window may appear. Click Yes/Always.

A blank schematic window for the inverter design appears.

EEE 4134 VLSI I Sessional

 Page 9

Schematic Entry: Adding an Instance to Schematic

Next, we will create simple schematic of an inverter consisting of an NMOS and a PMOS.

1. To create an instance, you can execute Create Instance in Virtuoso schematic editor window

or simply use shortcut key “i”. The following window will appear:

EEE 4134 VLSI I Sessional

 Page 10

2. Click Browse to select a library component. Another window will show up. Choose Library:

gpdk090, Cell: nmos1v, View: symbol. (Note that while you are doing this, the ‘Add Instance’

form is getting updated as well).

3. Make sure that the view name field in the form is set to symbol. After you complete the form,

move your cursor to the schematic window and click left button of mouse to place the component.

After entering the components, click Cancel in the Create Instance form or press Esc keeping

your cursor in the schematic window.

Similarly, add pmos1v cell.

If you place component in the wrong location, press ‘m’ on keyboard, click once on the component

to select it and move the mouse to move the component to your desired location.

4. Now we can adjust the sizes of the transistors by editing instance properties. Left click on the

NMOS to select the component. Then, press “q” to modify its properties, or in schematic editor

window, execute Edit Properties Object.

You will update the Library Name, Cell Name, and the property values given in the table below as

you place each component. The inverter design contains the following cells from the following

libraries.

Library Name Cell Name Properties/Comment

gpdk090 nmos1v For NM0, Width=240n (this is 2x the minimum channel width)

gpdk090 pmos1v For PM0, Width=480n

analogLib vdd

analogLib gnd

EEE 4134 VLSI I Sessional

 Page 11

For example, while modifying the transistor width for NMOS, set Total Width to 240n, and then

press ‘Tab’ key and the Finger Width will be set to the same value. Click OK.

Repeat this for PMOS to set Total Width and Finger Width to 480n. To deselect any object, press

keyboard command “Ctrl+d”.

Next, instantiate power nets (cell vdd and gnd from analogLib library).

5. Execute Create Pin or press ‘p’ on keyboard. ‘Add Pin’ form will appear. Enter the name of

the pin and Direction of the pin. Add all the pins (in, out) to the schematic. For an inverter, gate

input pin (e.g. in) is the input and output pin (e.g. out) at the common node between drains of

NMOS and PMOS is output of the inverter. So, select Direction property as input for in, and

output for out.

6. Use AddWire menu or simply press ‘w’ key while staying on the schematic editor to enter

wiring mode / Esc to exit. Click and release left button of mouse to start wire connections and click

again at another point to draw wire connection.

EEE 4134 VLSI I Sessional

 Page 12

It is a good practice to periodically save your work by clicking on Check and Save button (the

checkmark button just below the Tools menu). You can also save your work from the drop-down

menu FileSave.

The final schematic looks like the following one:

7. Click Check and Save.

8. Check CIW for errors or warnings. Some licence warnings may be ignored. If there are no error

or design warning, you should see the following message:

EEE 4134 VLSI I Sessional

 Page 13

Netlist Creation and Simulation using Spectre

The following flowchart shows the steps to be executed to simulate a design using ADE L:

Launch ADE L

Setup Model Libraries

gpdk090_mos.scs

Choose Section

TT_s1v

Setup Stimuli

Choose Analysis

Select Outputs

Save Session

Run Simulation

1. In the Schematic editor window, execute Launch ADE L. The following window may appear.

Click Always.

Analog Design Environment (ADE) L window will appear.

EEE 4134 VLSI I Sessional

 Page 14

2. Set up the model libraries by executing SetupModel Libraries. ‘Model Library Setup’

Window will appear:

3. Click twice on the file name given under Global Model Files. An ash coloured button will

appear.

Click on the button. ‘Choose Model File’ window will appear.

4. Select gpdk090_mos.scs from the list. Click Open.

In this model file, there are models to simulate various corners like fast-fast (FF), fast-slow (FS),

typical-typical (TT) etc. These are called process corners, depending on the speed of MOS

transistors (NMOS and PMOS). Refer to the following figure for the definition of process corners:

Slow Fast

 nMOS

p

M
O

S

S
lo

w

F
a
st

SS

SF

FS

FF

TT

EEE 4134 VLSI I Sessional

 Page 15

We will choose the section typical from the Section scroll bar and select the section 'TT_s1v'.

These will enable us to use the TT models of the 1.2 V MOS transistors. Only one Global Model

File will be defined. Uncheck or delete any other model files that appear. Click OK.

5. Now execute Setup Stimuli to assign signals to pins of the inverter.

6. In ‘Setup Analog Stimuli’ window, select Global Sources. Now you can see global power net

vdd!.

Click on Enabled, Select dc under Function and Voltage under Type. Put a value of 1.2 on the

DC voltage box. The filled up form for ‘vdd!’ will look like the one below. Click Apply (clicking

OK will close the window and it will have to be reopened to setup inputs).

7. Select Inputs. For input pin ‘in’, we have to set a pulse waveform. The following figure shows

the definition of pulse parameters:

EEE 4134 VLSI I Sessional

 Page 16

For setting signal to input pin ‘in’, select Inputs in Setup Analog Stimuli window. Click on

‘Enabled’, select Function: ‘pulse’, Type: ‘Voltage’. Parameters for pulse source will be as

follows: Voltage1 = 0V, Voltage2 = 1.2V, Period = 40n, Delay time = 3n, Rise time = 3n, Fall

time = 3n, Pulse width = 20n. Click Apply and then click OK. (Delay, Rise time and Fall time can

also be set at ps ranges for sharp transitions).

8. Now choose the analysis to be done from AnalysesChoose. Select transient (tran) analysis to

be done. Provide a reasonable value for ‘stop time’ to observe few periods of signals. (e.g.

Analysis: tran, Stop Time: 100n, Accuracy Defaults: moderate). Click OK.

Delay

Time

Voltage

Time

Rise

Time
Pulse Width Fall

Time

Period Period

Voltage1

Voltage2

EEE 4134 VLSI I Sessional

 Page 17

9. Select the output to be plotted by executing OutputsTo be plottedSelect on Design in the

ADE window. Schematic editor window will pop up, select ‘out’ and ‘in’ by clicking on the

pins/terminals or selecting from the list on the left hand side as shown in the figure below. When

you select them, you will see colours being assigned to these pins.

EEE 4134 VLSI I Sessional

 Page 18

10. Your Analog Design Environment window should now look like the following:

11. Before closing the Virtuoso Analog Design Environment window, it is a good idea to save

design settings in a state file, so we can load it up next time. To do this, execute Session Save

State and save state name in the ‘Save As’ field as ‘inverter’. Next time you run Cadence, you can

simply load the simulation settings from this file by executing Session Load State.

EEE 4134 VLSI I Sessional

 Page 19

12. Now run the simulation by executing SimulationNetlist and Run in the ADE window. The

simulation will run and the output will appear in Virtuoso Visualization & Analysis XL window as

shown below.

13. Finally, we are going to separate the plots into two sub-graphs. Click on the following icon for

splitting graphs.

The final plot should look like the one shown below:

EEE 4134 VLSI I Sessional

 Page 20

Definition of rise time, fall time and propagation delay

Three main timing parameters are associated with CMOS devices – rise time, fall time, and

propagation delay. Most often, in discussion with regard to these parameters, the system response

of an inverter is used. The following figure defines rise time, fall time and propagation delay of a

gate with the example of an inverter:

Voltage (in)

Time

Voltage (out)

Timert
ft

pHLt pLHt

10% 10%

50% 50%

50% 50%90% 90%

EEE 4134 VLSI I Sessional

 Page 21

Referring to the above figure, rise time is the time that it takes to charge the output capacitive load.

Fall time is the time it takes for the output capacitive load to discharge. The rise and fall time are

usually measured from 10% to 90% and from 90% to 10% of the steady state value of a waveform,

respectively.

Propagation delay is the time difference between approximately 50% of the input transition and

approximately 50% of the output transition.

Measuring propagation delay using Waveform calculator

Waveform calculator can be used to perform many different measurements and transformations on

the waveforms displayed in the waveform window. This includes – computing the average of a

waveform (e.g. power) over the entire length of the simulation or in a given period of time, finding

the propagation delay of between input and output signals, or

addition/subtraction/multiplication/division of waveforms, etc.

1. Execute ToolsCalculator in Virtuoso Visualization & Analysis XL window. ‘Virtuoso

Visualization & Analysis XL calculator’ window will pop-up:

EEE 4134 VLSI I Sessional

 Page 22

2. Select ‘vt’. Go to Schematic editor window and click on input node ‘in’. An expression (e.g.

VT(“/in”)) will appear. Copy the expression.

3. In the Function Panel, select ‘Special functions’ and select ‘delay’.

4. The following window will appear. Put the expression previously obtained in the field ‘Signal1’.

Do the same for output signal ‘out’ to fill in the field ‘Signal2’.

Fill up the rest of the form as follows:

EEE 4134 VLSI I Sessional

 Page 23

5. Click OK. The following expression should appear:

6. Click on Evaluate the buffer icon.

The propagation delay (in seconds) will be displayed in the window.

Measuring rise time and fall time using Waveform calculator

1. Open the ‘delay’ function window under Waveform calculator in the same way that you

followed for propagation delay measurement. This time both Signal1 and Signal2 will be

VT(“/out”).

2. Threshold value 1 and 2 should be 0.12 (10% of 1.2 V supply) and 1.08 (90% of 1.2 V supply)

respectively for 10% to 90% rise time calculation. These values should be swapped for fall time

calculation.

3. For rise time/fall time calculation, both the Edge numbers must be the same.

4. The Edge types should be rising for rise time calculation and falling for fall time calculation.

Example: Rise time calculation of rising edge 2 for an inverter:

EEE 4134 VLSI I Sessional

 Page 24

5. Click OK after filling in the form as shown above. The following expression should appear:

Power Measurement using Waveform Calculator

In this tutorial, we will compute the average power consumed in a circuit for the duration of

transient simulation window.

1. To do this, make sure that before running simulation you select the OutputsSave All option in

ADE L window. ‘Save Options’ window will appear. Under ‘Select power signals to output

(pwr)’ option, put a tick mark in all option. Click OK.

2. Then simulate the circuit as usual, by executing SimulationNetlist and Run.

Execute Tools Result Browser in ADE L window. ‘Result Browser’ window will appear to the

left side in ‘Virtuoso Analysis and Visualization XL’ window.

EEE 4134 VLSI I Sessional

 Page 25

3. Double-click on tran. From the signals list, double-click on :pwr

4. The waveform display window will show the “:pwr” (the instantaneous power consumed by the

whole circuit) along with ‘in’ and ‘out’ signals.

EEE 4134 VLSI I Sessional

 Page 26

5. Now, open Waveform calculator window. The calculator window appears. Make sure the

“Wave” and “Clip” options are selected.

6. Now switch back to the waveform window and left click the mouse once on the power

waveform. Then switch back to the calculator window. The buffer window should be filled in as

follows:

7. Now select ‘average’ from ‘Special Functions’ Menu.

EEE 4134 VLSI I Sessional

 Page 27

8. The buffer will now look like the following one:

9. Click on Evaluate the buffer icon and the average power dissipation in that time window will

be displayed (about 1.838 𝜇W in this example).

 Exercises

1. Explain the nature of power consumption curve.

2. Perform SS, FF, SF and FS process corner simulations and compare the power consumption

and propagation delays.

EEE 4134 VLSI I Sessional

 Page 28

Appendix: Cadence Virtuoso® Schematic Editor L Shortcuts

Shortcut key Tasks performed

w Add a wire

i Add an instance

p Add a pin

l Add label to a wire

e Display options

q Select an object and press q to open ‘Edit

Object Property’ dialogue box

[Zoom out

] Zoom in

c Copy

m Move

u Undo

Shift+u Redo

f Fit the entire schematic in the window

EEE 4134 VLSI I Sessional

 Page 29

EEE 4134 VLSI I Laboratory

Lab 2

DC sweep, Parametric sweep and Symbol creation of inverter

Objectives:

 To learn how to perform DC sweep and parametric simulation in ADE L

 To learn how to create symbol view from schematic view

DC Simulation and Parametric Analysis in ADE L

1. To open the schematic of inverter, execute FileOpen in CIW. In the ‘Open File’ window,

select the inverter schematic from the list. Click OK.

2. Schematic editor window will open. Execute File Save a copy. In the following window,

change the name of the cell to inverter2. Click OK. Close the schematic editor window and open

the inverter2 cell from CIW.

3. This time we will perform both DC and parametric simulation at the same time on inverter

schematic. We will obtain the transfer characteristic curve (TCC) of inverter from DC simulation

EEE 4134 VLSI I Sessional

 Page 30

and by varying the width of the PMOS transistor; we will observe its effect on transfer

characteristics.

Select the PMOS transistor in the schematic editor window, click ‘q’ and ‘Edit object properties’

window will open. Place w under ‘Total Width’ and press tab on keyboard. The ‘Finger Width’

field will be automatically changed as follows:

4. Place symbol of an instance vdc from analogLib to the schematic. In the ‘DC voltage’ field,

type vin and press tab on keyboard. Connect the voltage source between ‘in’ and ‘gnd!’.

5. Now place another instance of vdc on the schematic, in the ‘DC voltage’ field, put 1.2 and

connect it between vdd! and gnd!

The final schematic should look like the following:

EEE 4134 VLSI I Sessional

 Page 31

You can remove the ‘in’ pin and ‘vdd’ symbol. Click Check and Save.

6. Execute Launch ADE L and setup Model Library to gpdk090_mos.scs and section to

TT_s1v similar to the way you did in Lab 1.

7. Execute Variables Edit and ‘Editing Design Variables’ window will open.

EEE 4134 VLSI I Sessional

 Page 32

8. Select ‘Copy From’. You will see ‘w’ and ‘vin’ appear in the ‘Design Variables’ window.

Click on ‘w’ and in ‘Value (Expr)’ field, put a default value of 480n. Click Apply. Similarly click

on ‘vin’ and in ‘Value (Expr)’ field, put a default value of 0.6.

Then click OK.

9. Execute Analyses Choose and in the ‘Choosing Analyses’ form, select dc. Click on ‘save dc

operating point’.

10. Under ‘Sweep Variable’, select ‘Design Variable’ and click on ‘Select design variable’.

Select ‘vin’ and click OK.

11. Under ‘sweep range’, select ‘start-stop’ and put a start value of 0 and a stop value of 1.2.

Select ‘Sweep type’ to be ‘linear’ and ‘Step size’ to be 0.01. Click OK.

EEE 4134 VLSI I Sessional

 Page 33

12. Execute Outputs To be plotted and select ‘out’ pin on the schematic.

ADE L window will now look like the following:

EEE 4134 VLSI I Sessional

 Page 34

Select Netlist and run to simulate a single TCC for the given default PMOS width of 480nm.

13. Execute Tools Parametric Analysis. ‘Parametric Analysis’ window will open.

14. Click on ‘Add Variable’. From the drop down menu, select ‘w’. Put From: 240n and To:

720n. Select Step Mode: linear steps from the drop down menu and put Step Size: 120n.

Click on ‘Run selected sweeps’ icon to start simulation.

EEE 4134 VLSI I Sessional

 Page 35

The simulated waveforms will be displayed.

These transfer characteristics can be further explored to find Noise margin, and inversion voltage

for different widths of PMOS.

15. This parametric analysis option can be saved for later use by clicking on the save icon.

In the following window, give a name to the configuration file and click Save.

16. Also save the state of the ADE L window.

EEE 4134 VLSI I Sessional

 Page 36

 Exercises

1. Show the effect of changing NMOS width on the TCC of an inverter.

2. Perform a parametric analysis in transient simulation to show the effect of changing the PMOS

width on the propagation delay. You are expected to obtain a similar graph as shown below:

Setup necessary settings for the delay function in the waveform calculator. Click OK and click on

‘Evaluate the buffer and display the results in a table’ icon.

The results should be displayed in a table like below:

3. Some of the propagation delays are negative. Explain why?

4. Explain the change in propagation delay with the change in PMOS transistor width.

5. Obtain the output characteristic curve (ID vs VDS) and transfer characteristic curve (ID vs VGS)

of NMOS and PMOS.

EEE 4134 VLSI I Sessional

 Page 37

Symbol Creation

In this section, you will create a symbol for your inverter design so that you can use this symbol

view for the schematic in a hierarchical design. In addition, the symbol has attached properties

(cdsParam) that facilitate the simulation and the design of the circuit.

1. Open the schematic of the cell inverter from library mylib.

2. In the schematic editor window for inverter, execute CreateCellviewFrom Cellview.

‘Cellview from cellview’ window appears. Click OK.

In the ‘Symbol Generation Options’ window, you can choose the location of the pins.

Click OK and the Symbol Editor window will open.

EEE 4134 VLSI I Sessional

 Page 38

3. Click Delete icon in the symbol window, delete the outer red rectangle and green rectangle.

4. Execute Create Shapepolygon, and draw a shape similar to triangle. After creating the

triangle, press Esc key.

5. Execute CreateShapeCircle to make a circle at the end of the triangle. You can move the

pin names according to the location.

6. Execute CreateSelection Box. In the ‘Add Selection Box’ form, click ‘Automatic’.

A new red selection box is automatically added.

EEE 4134 VLSI I Sessional

 Page 39

7. After creating symbol, click on the save icon in the symbol editor window to save the symbol. In

the symbol editor window, execute FileCheck and Save. Then close the symbol editor window.

EEE 4134 VLSI I Sessional

 Page 40

EEE 4134 VLSI I Laboratory

Lab 3

Layout of an Inverter using Virtuoso L

Objectives:

 To create a layout view of the basic inverter circuit from scratch in Virtuoso Layout Editor

 To design the layout keeping basic design rules in mind

 To design cell layout of a constant height for use in hierarchical design

Introduction to Layout, DRC and LVS

Layout is representation of a circuit in terms of planar geometric shapes (e.g. rectangles, polygons)

showing the patterns of metal, polysilicon, oxide, or diffusion layers that make up the components

(resistors, inductors, capacitors, transistors) of the integrated circuit.

When using a standard process (e.g. 45nm, 90nm or 180nm process available in our lab), the

behaviour of the final integrated circuit depends significantly on the positions and interconnections

of the geometric shapes due to parasitic resistances and capacitances contributed by them. While

designing a layout, designer must keep in mind performance (e.g. power-delay product) and size

(area occupied by the chip) criterion.

While designing digital circuits, one usually follows an ASIC design flow, where, the height of

standard cells that are used is the same throughout the cell library, but their widths must vary

according to their logical functions and drive strengths. The following figure shows a generalized

standard cell height concept:

VDD BUS

P-TYPE TRANSISTORS

N-TYPE TRANSISTORS

GND BUS

DIFFUSION SPACING Cell Height

Although we will follow a full-custom IC design flow, we will maintain same cell height

throughout our cell library.

The generated layout must pass a series of checks in a process known as physical verification. The

most common checks in this verification process are:

 Design Rule Checking (DRC)

 Layout Versus Schematic (LVS) checking

 Parasitic extraction and post-layout simulation

Design Rule Check (DRC):

Design Rule Checking (DRC) is the process that determines whether the designed layout of a

circuit satisfies a rules specified by the process being used.

Design Rules are a series of rules (e.g. area, width, overlap, enclosure, extension, spacing) provided

by semiconductor manufacturers which are specific to a particular semiconductor manufacturing

process. Design rules specify certain geometric and connectivity restrictions to ensure that the

process can fabricate the device properly.

EEE 4134 VLSI I Sessional

 Page 41

Layout versus Schematic (LVS) Check:

The Layout Versus Schematic (LVS) is the verification step to determine whether a

particular integrated circuit layout corresponds to the original schematic or circuit diagram of the

design. A successful Design rule check (DRC) ensures that the layout conforms to the rules

designed/required for faultless fabrication. However, it does not guarantee if it really represents the

circuit we desire to fabricate. This is why an LVS check is used.

Layout design using Virtuoso Layout Suite L Editor

1. Invoke Virtuoso Layout Suite L Editor from the CIW by executing FileNewCellview.

The ‘New File’ form appears. Fill it in as shown in the figure below:

Cell: inverter, View: layout. Click OK.

2. Click ‘Always’ if the following window appears before Layout window appears.

The following window of Virtuoso Layout Suite L Editor will appear.

EEE 4134 VLSI I Sessional

 Page 42

On the left side of the window, you will find a panel called ‘Layers’. This panel is divided in three

main categories which are: layer color, layer name and layer purpose. The details are described in

the table below:

Color Matches the color in the Editing window. Each layer has its own color and pattern.

Each layer has two colors associated with it: a fill color and an outline color. These

colors can be changed to fit your taste by editing the technology file.

Name The type of layer (Nwell, Oxide, Poly, Metal1, etc)

Purpose In gpdk090 the only purpose classifications are: drw = drawing, slot = slot

Drawing is used in layout, slot is used to create a hole for metal stress relief

Verify that the layers display corresponds to the gpdk090 layers shown in the GPDK 90 nm Mixed

Signal Process Specification manual (gpdk090_DRM.pdf).

3. Before starting to design layout, you need to set the layout display configuration. Execute the

following in the Virtuoso Layout Editor: OptionsDisplay or press ‘e’ on keyboard. Configure

the form as shown in the figure below: You have to set the following parameters only:

Minor spacing 0.01

Major spacing 0.1

X snap spacing 0.005

Y snap spacing 0.005

Display Levels: Stop 10

EEE 4134 VLSI I Sessional

 Page 43

4. Now we are going to build the layout of the inverter. An inverter has an NMOS and a PMOS

transistor. First we will build an NMOS transistor.

Layout of NMOS inverter consists of oxide, Nimp, Cont and Poly layers. Study the rules of these

layers and calculate the minimum size of the Poly, Cont, Oxide and Nimp layer to create an NMOS

transistor.

EEE 4134 VLSI I Sessional

 Page 44

The rules related to the NMOS transistor can be summarised as follows:

Contact size 0.12 𝜇m × 0.12 𝜇m (Fixed)

Poly width (Minimum) 0.1 𝜇m (Fixed MOS gate length)

Contact to poly spacing (Minimum) 0.1 𝜇m

Contact to oxide enclosure (Minimum) 0.06 𝜇m

Poly/Nimp extending from oxide (Minimum) 0.18 𝜇m (gate side enclosure)

Nimpenclosing oxide (Minimum) 0.14𝜇m (enclosure other than gate sides)

Minimum Metal 1 width 0.12 𝜇m

Maximum Metal 1 width 12.0 𝜇m

Minimum Metal 1 to Contact enclosure 0.06 𝜇m (on at least two opposite sides)

The following figure illustrates some of the design rules mentioned above:

Cont

12.0

1
2

.
0

1.0 1.0 14.014.0

18.0

18.0

1.0

P
o
ly

Oxide06.0

Nimp/Pimp

Now study the PMOS transistor structure in the GPDK 90 nm Mixed Signal Process Spec. The

PMOS transistor consists of Oxide, Poly, Pimp, Cont and Nwell layer. Study the rules of these

layers and calculate the minimum size of Poly, Cont, Oxide, Pimp and Nwell layer to create a

PMOS transistor. The rules related to PMOS are same as NMOS except the there is an additional

layer, the Nwell, whose rules are as follows:

Minimum Nwell width 0.6 𝜇m

Minimum Nwell spacing to Nwell (same potential) 0.6 𝜇m

Minimum Nwell spacing to Nwell (different potential) 1.2 𝜇m

Minimum Nwell spacing to N+ active area 0.3 𝜇m

Minimum Nwell spacing to P+ active area 0.3 𝜇m

Minimum Nwell enclosure to P+ active area 0.12 𝜇m

Minimum Nwell enclosure to N+ active area 0.12 𝜇m

Minimum N+ Active Area to P+ Active Area Spacing 0.16𝜇m

Now we start building the NMOS and PMOS transistor layout. Look at the LSW and find the

current drawing layer.

EEE 4134 VLSI I Sessional

 Page 45

5. Click on the following icon in Virtuoso Layout Suite L Editor window so that it notifies you

anytime you make a violation of any design rule. When clicked, it will show ‘DRD Notify ON’.

DRD stands for Design Rule Driven.

6. Select ‘Cont (drw)’ (contact) layer from the ‘Layers’ panel and draw a rectangle of ‘Cont

(drw)’ layer using CreateShapeRectangle or simple pressing ‘r’. Press ‘Esc’ to stop ‘create

rectangle’ tool. In gpdk090 technology, Cont layers must be of dimension 0.12 𝝁m x 0.12 𝝁m. So,

if your rectangle is not of that dimension, click on the rectangle, press ‘q’. In the following

window, check if the criterion has been met and change ‘Width/Height’ if required.

Contact to poly spacing must be 0.1 𝝁m in this technology and the channel length of

NMOS/PMOS in our design is 0.1 𝝁m. So, we need a minimum space of 0.3 𝝁m between the

contacts at source and drain.

7. Press ‘k’ to invoke the ‘ruler’ tool. Use it to measure lengths whenever needed. To copy, press

‘c’. After placing two contacts, the layout looks like this:

8. Now, contact to oxide spacing is minimum 0.06 𝝁m. So, draw a rectangle of ‘Oxide (drw)’

layer so that it covers both the contacts and extends from each side by 0.06 𝝁m.

EEE 4134 VLSI I Sessional

 Page 46

While drawing this, you will see Design rule violations when they are committed.

9. After drawing oxide layer, the layout should look like this:

10. Now we will draw ‘Nimp (drw)’ layer, which must extend from the oxide layer by a minimum

of 0.14 𝝁m. First, draw a rectangle and then extend it to meet design rules. Use stretch tool by

pressing ‘s’. Layout will look like the following:

EEE 4134 VLSI I Sessional

 Page 47

11. Now, copy it and create another copy of all these layers by selecting all and pressing ‘c’.

12. Click on the ‘Nimp (drw)’ layer of the copy in the upper portion of the layout and press ‘q’ to

edit properties. From ‘Edit Rectangle Properties’ window, select ‘Pimp (drw)’ layer under

‘Layer’ option. Click OK.

13. With more metal layers available in today’s silicon processes, using the routing approach, such

as first metal traverse vertically and second metal traverse horizontally, would be advantageous in

standar cell physical design. Using this method, the second layer (e.g. Metal2) can be used for

power and ground routing over internal standard cell transistors. In standard cell layout, it is

preferable to use firt conducting layer, such as Metal1, as much as possible to make internal

connections of NMOS and PMOS transitors within the cell. If there is a nedd to use other

conducting layers, such as, Metal2, use of such layers must be kept to a minimum. It is desired to

use first routing (e.g. Metal1) layer for standard cell ports.

Our cells will have a height of 5 𝝁m. Place the two parts (NMOS and PMOS) 2 𝝁m apart, and

create a ruler so that the cell height can be checked whenever needed and the separation between

the NMOS and PMOS can be maintained properly. Now, the layout will look like the following:

EEE 4134 VLSI I Sessional

 Page 48

14. Next, draw a ‘Poly (drw)’ path by selecting ‘Poly’ layer from the ‘Layers’ panel and pressing

‘p’ to invoke ‘create path’ tool. This layer must be of 0.1 𝝁m in width and in between the two

contacts, extending from the oxide layer by 0.18 𝝁m (at least, on both sides). After placing the

‘poly’ gate, the layout will look like the following one:

EEE 4134 VLSI I Sessional

 Page 49

15. Now that you know most of the shortcuts and layers, draw contact for body terminals for

NMOS and PMOS. These portions should consist of Cont, Oxide and Nimp (for body of PMOS) or

Pimp (for body of NMOS). Check DRD notifications for design rule violations. The following

figure shows a Psubstrate and an Nwell contact. The measurement dimensions are shown only on

the left one, as they are same for both contacts.

EEE 4134 VLSI I Sessional

 Page 50

16. Connect the Drain regions of the NMOS and PMOS. Also connect the source of both MOS’s to

respective body terminals using ‘Metal1 (drw)’ layer. Connect the drains of the MOS’s using

‘Metal1 (drw)’ layer.

17. PMOS should be in ‘Nwell (drw)’. So draw an ‘Nwell (drw)’ rectangle surrounding both the

PMOS and the body contact for PMOS. The layout will look like the following:

EEE 4134 VLSI I Sessional

 Page 51

18. Now, we have to place pins. The gate is in ‘poly (drw)’ layer. Let’s bring it to ‘Metal1(drw)’

layer by extending the ‘Poly (drw)’ layer, creating a contact between ‘Poly’ and ‘Metal1’ layer by

pressing ‘o’ to ‘create via’ and selecting ‘M1_POv’ under ‘via definition’ and placing it on

layout.

19. Also draw a ‘Metal1 (drw)’ rectangle on the via, because the default Metal1 rectangle area is

less than the required minimum.

EEE 4134 VLSI I Sessional

 Page 52

20. Now, Execute CreatePin to create pins for vdd!, gnd!, in and out.

For in, vdd! and gnd! select ‘input’ as ‘I/O type’ and for out select ‘output’ as ‘I/O type’. Now,

draw rectangles on the Poly-Metal1 via for ‘in’ pin, PMOS source-to-body ‘Metal1’ connection

for ‘vdd!’ pin and NMOS source-to-body connection for ‘gnd!’ pin. For ‘out’ pin, draw the

rectangle on the Metal1 layer connecting the two drains of MOS’s.

EEE 4134 VLSI I Sessional

 Page 53

You may add label to pins.

21. Finally, add Metal2 paths of 0.5 𝝁 width for power rails and connect them to power nets in

Metal1 by using Metal1 to Metal2 via by invoking ‘create via’.

EEE 4134 VLSI I Sessional

 Page 54

The final layout will look like the following:

EEE 4134 VLSI I Sessional

 Page 55

Creating Body ties

Now you know what body tie is. We will now make two instances for body ties one for Psub and

one for Nwell.

1. Execute FileNewCellview and fill in the New File form as follows. Click OK.

2. Draw psubstrate contact in the same way as you have made it in Lab3.

3. Save it and make nwell contact similarly (name it M1_NWELL), just change the Pimp layer to

Nimp and everything else is the same.

Save these two for later use.

EEE 4134 VLSI I Sessional

 Page 56

Appendix A (Shortcut keys for Cadence Virtuoso ® Layout Editor L)

Shortcut Key Tasks performed

f Fit display to window

r Draw rectangle

q Edit property of an object

p Makes a min width path of the layer

selected in LSW

Ctrl+a Select all

Ctrl+d Deselect all

c Copy

m Move

s Stretch side of a rectangle

k Invoke ruler tool

Shift+k Delete all rulers

i Add an instance

u Undo

Shift+u Redo

e Display options

o Add via between layers

l Create a label

EEE 4134 VLSI I Sessional

 Page 57

Appendix B (gpdk090 Design Rules Guide (Abridged Version for VLSI-I Lab))

Terminology Definitions

Spacing - distance from the outside of the edge of a shape to the outside of theedge of another

shape.

Enclosure - distance from the inside of the edge of a shape to the outside of theedge of another

shape.

Overlap - distance from the inside of the edge of a shape to the inside of the edgeof another shape.

Butting - outside of the edge of a shape touching the outside of the edge of anothershape.

EEE 4134 VLSI I Sessional

 Page 58

Appendix C (Some Most Commonly Violated Design Rules for gpdk090 technology)

Description

 (For metals k=2 to 6, for vias k=1 to 6)

Value
(µm/µm2)
wherever
applicable

Minimum oxide (active) area 0.06

Minimum 1.2V N/P Channel gate length 0.1

Minimum poly interconnect width 0.1

Minimum gate/poly interconnect space 0.12

Minimum N/P-channel gate extension beyond active area 0.18

Minimum poly interconnect to related/unrelated active area space 0.1

Minimum poly interconnect area 0.1

Bent gate is not allowed

Minimum N+/P+ implant width 0.24

Minimum N+/P+ implant space 0.24

Minimum N+/P+ implant to active area enclosure 0.14

Minimum N+/P+ implant to gate side enclosure 0.18

Minimum N+ to P+ active area (inside Nwell) spacing 0.16

Minimum N+/P+ implant area 0.15

N+ implant is not allowed over P+ implant

Minimum P+ to N+ active area (outside Nwell) spacing 0.16

Maximum and minimum Contact width/length 0.12

Minimum Contact to Contact spacing 0.14

Minimum Contact on Active Area to gate spacing 0.1

Minimum gate Contact to Active Area spacing 0.12

Minimum Active Area to Contact enclosure 0.06

Minimum Poly to Contact enclosure 0.04

Minimum Poly to Contact enclosure on at least two opposite sides (end of line) 0.06

Contact on gate is not allowed, Contact must be covered by Metal1 and active
area/poly

Minimum Metal 1 width 0.12

Maximum Metal 1 width 12

Minimum Metal 1 to Metal 1 spacing 0.12

Minimum Metal 1 to Contact enclosure 0

EEE 4134 VLSI I Sessional

 Page 59

Minimum Metal 1 to Contact enclosure on two opposite sides of the Contact 0.06

Minimum Metal1 area 0.07

Minimum Metal k width 0.14

Maximum Metal k width 12

Minimum Metal k enclosure of Via k-1 0.005

Minimum Metal k enclosure of Via k-1on at least two opposite sides 0.06

Minimum Metal k area 0.08

Minimum and maximum Via k width 0.14

Minimum Via k to Via k spacing 0.15

Minimum Metal k to Via k enclosure 0.005

Minimum Metal k to Via k enclosure on at least two opposite sides of Via k 0.06

Minimum of four Via k with spacing <= 0.30µm or nine Via k with spacing <=
0.60µm are required when connecting Metal k and Metal k+1 when one of the
Metals has a width > 1.0µm at the connection point

Minimum Nwell width 0.6

Minimum Nwell spacing to Nwell (same potential) 0.6

Minimum Nwell spacing to Nwell (different potential) 1.2

Minimum Nwell spacing to N+/P+ Active Area 0.3

Minimum Nwell enclosure of N+/P+ Active Area 0.12

EEE 4134 VLSI I Sessional

 Page 60

EEE 4134 VLSI I Laboratory

Lab 4

DRC, LVS, RCX and Post-layout simulation of an inverter

Objectives:

 To perform Design rules check (DRC), Layout vs. Schematic check (LVS) of inverter

layout

 To extract parasitic resistance and capacitance from layout of designed inverter

 To perform transient simulation of extracted view

 To create layout views for body ties of NMOS and PMOS for further use

DRC Rules check by Cadence’s ASSURA

1. Now we would like to check the DRC rules by ASSURA. Execute AssuraTechnology. In the

following window, type the path of ‘Assura Technolgy File’ as shown. Click OK.

2. Execute AssuraRun DRC. A DRC window appears as shown below. Fill the form as indicated

in the picture.

Give a Run name. Select ‘gpdk090’ under ‘Technology’. Then click OK.

EEE 4134 VLSI I Sessional

 Page 61

3. A DRC completed window appears as shown below, after completion of DRC run:

Click Yes.

4. ‘Error layer Window’ (ELW) appear as shown below with INVX1 layout window which shows

the errors.

EEE 4134 VLSI I Sessional

 Page 62

5. To correct the errors, find the error location by clicking on the error and then clicking on the

right arrow key on ELW. To hide all the errors, click on ‘NV’ (no Layers visible) button.

The particular error in the following figure is due to a lower than 0.18 𝜇m enclosure of gate by

Pimp (drw) layer. Stretch the Pimp layer to correct it. Similarly, do this for all errors in your layout.

No one can list all the errors one may commit, try correcting one after another and be familiar with

them by solving them through practice.

After correcting all the errors, run the DRC again.

6. If your design is error free, you should get the following message.

EEE 4134 VLSI I Sessional

 Page 63

LVS check by Cadence’s ASSURA

1. Execute AssuraRun LVS. Select gpdk090 and give a Run name.

Click OK.

2. After completion of lvs run, you will get a result window. If you have done everything right, it

will say that Schematic and Layout match.

Suppose that, you have done a mistake, your schematic says the PMOS width is 480n where layout

says it is 240n. What will happen in LVS report? Let’s see.

EEE 4134 VLSI I Sessional

 Page 64

Note that, LVS report says that 1 cell had parameter mismatch. That means one cell had two

different dimensions in schematic and layout. Click OK. ‘LVS Debug’ window will appear:

3. Select INVX1 (mylib). Notice that summary window shows the list of errors.

EEE 4134 VLSI I Sessional

 Page 65

4. Only parameter mismatch has occurred. Click on Parameters and Open Tool.

5. ‘Parameters mismatch tool’ will open.

6. Select PM0 pmos1v. Now in the Message box, you can see the mismatch error.

7. Change the width of PMOS to the value of width in layout and run LVS again. This time you

will get an LVS match.

EEE 4134 VLSI I Sessional

 Page 66

Parasitic Extraction by Quantus QRC

(In this section, the inverter cell name is given as INVX1, which is inverter in your case)

1. Execute AssuraOpen Run. Select the final error free lvs run name in the run name field (it

automatically loads the last lvs run). Click OK.

2. Execute AssuraRun Quantus QRC. Select Extracted View in the output field under Setup

tab.

EEE 4134 VLSI I Sessional

 Page 67

3. Go to Extraction tab. Select RC as Extraction type and put the name of your reference node

(gnd! in the given case) and click OK.

EEE 4134 VLSI I Sessional

 Page 68

4. After completion of the run, you will get the following message:

5. Execute FileOpen and fill in the form as follows. Click OK.

Extracted view will open.

EEE 4134 VLSI I Sessional

 Page 69

6. Now Launch ADE L from the av_extracted view and setup everything other than outputs to be

plotted in the same way as you have done in Lab 1. After setting everything else, execute

OutputsTo be plotted Select on design. Go to av_extracted view. Click on the in pin location

on that view. The following window will appear. Select pin name in and click OK. Do the same for

out pin.

Then run the simulation and observe the output waveforms. Then measure power and delay using

waveform calculator.

 Exercise

1. Analyse the effect of parasitic RC elements on the power consumption and propagation delay of

an inverter.

EEE 4134 VLSI I Sessional

 Page 70

EEE 4134 VLSI I Laboratory

Lab 5

Schematic Driven Layout of a 2-input NAND gate using Virtuoso Layout Suite

Editor XL

Objectives:

 To be familiar with schematic-driven layout with the example of a 2-input NAND gate.

 To perform Schematic Level Verification, Layout Design, DRC and LVS check and

perform post-layout simulation from extracted view

Creating Layout using Virtuoso Layout Editor XL

1. Virtuoso Layout Editor XL is a schematic-driven layout generation tool. To learn schematic

driven layout we will create the schematic view of a 2-input NAND gate cell which we named

NAND2X1.

2. Instantiate the following cells to your schematic.

Library Name Cell Name Properties/Comment

gpdk090 nmos1v For NM0 and NM1, Width = 240n

gpdk090 pmos1v For PM0 and PM1, Width = 480n

analogLib vdd

analogLib gnd

Use your experience from Lab1 to draw the schematic diagram of the nand gate.

EEE 4134 VLSI I Sessional

 Page 71

3. Launch ADE L and simulate the design to verify its functionality. Setup Model library,

Analysis type and Outputs to be plotted as you have done in Lab1.

While setting inputs for signals A and B, you have to use different periods and delays for the two

signals, so that you can observe all four cases (00, 01, 10, 11) of input signals. Also make sure 01

and/or 10 transitions for both input signals do not occur at the same time. The following figure

shows a sample of two signals meeting these criteria:

A sample waveform window would look like the following after simulation:

Check the functionality of the schematic (whether it acts like a nand gate).

Voltage (A)

Period (A)

Time

0 1 0 1

Delay

Time(A)

Voltage (B)

Period (B)

0 0 1 1
Delay

Time(B)

EEE 4134 VLSI I Sessional

 Page 72

4. Then create a symbol in the same way you have made symbol of inverter in lab2. Make it look

like a nand gate.

5. In schematic editor window, execute: LaunchLayout XL. The following window will appear:

6. Click OK. ‘New File’ window for layout will appear. Click OK.

‘Virtuoso Layout Editor XL’ window will appear.

EEE 4134 VLSI I Sessional

 Page 73

7. Execute Connectivity Generate All From Source. The following pop-up window will appear:

EEE 4134 VLSI I Sessional

 Page 74

8. Go to I/O pins tab. The dialog box shows that all I/O pins are in Metal1 layer (Metal1 drw).

Also put a tick mark on Create label as Label. Click Options. Set Height to 0.1.

Click OK, and OK.

9. The initial pin and transistor placement in layout will look like the following:

EEE 4134 VLSI I Sessional

 Page 75

10. Execute OptionsDisplay or Press ‘e’ on keyboard to open ‘Display Options’. Fill it in as

shown:

EEE 4134 VLSI I Sessional

 Page 76

11. The transistors and pins are shown inside a bounding box, which is an estimate of the optimum

size of the final layout. Automatic router will use the bounding box to constrain all routing to occur

within the box. The bounding box may need to be re-sized to accommodate all components. An

important concept to keep in mind during resizing is that standard cells typically have fixed height

(so that power/ground rails line up correctly for routing purposes).

Delete the PR Boundary for now.

Virtuoso Layout Editor XL (VXL) and gpdk090 allow us to create stacked transistors with shared

source/drain areas. Zoom in to two transistors at the bottom (to zoom in, type “z” and draw a box

around the transistors). Click on the transistor on the right and type “m” to move the object. As

you start dragging the object to the left, fly-lines indicating connectivity will appear as shown

below:

EEE 4134 VLSI I Sessional

 Page 77

12. When the source/drain areas are overlapped, left-click to fix the position. You should see a

transistor stack with shared source/drain areas like this (depending on how far you move, you may

need to move left/right a bit):

This is a nice NMOS stack for the NAND gate. As you can see, the source/drain contacts have

disappeared. Back to the big picture, zoom to fit (press “f”).

EEE 4134 VLSI I Sessional

 Page 78

Let’s do the same exercise for the PMOS transistors. The PMOS transistors in nand gate do have

shared drain contacts because they work in parallel. Connectivity information is extracted from

schematic by VXL. The pull-up network looks like the follwoing:

13. Now, connect different layers using path tool (press ‘p’ on keyboard), and fill areas by drawing

rectangles where necessary (press ‘r’ on keyboard). To connect one layer to another (e.g. Poly to

Metal1 or Metal1 to Metal2), create via by pressing ‘o’ on keyboard and selecting proper ‘Via

Defintion’.

14. Instantiate M1_PSUB and M1_NWELL cells (that you have created earlier) by pressing ‘i' on

keyboard and selecting the layout view from library browser.

EEE 4134 VLSI I Sessional

 Page 79

15. Wire up the layout. When you do so, you may encounter multiple options for certain pins. For

example, when you select the PMOS to connect its source to VDD, there are multiple Metal1 wires

in the PMOS. The desired path will be highlighted and you’ll see the fly-line. Continue until you

finish routing all the signals. Move vdd! and gnd! pins to the power rails. As you are moving the

pins around, notice the fly-lines that indicate the connections.

A practice that you can follow while wiring is to use Metal1 for all vertical wiring and Metal2 for

all horizontal wiring inside the cell.

Also make the cell height 5 𝝁m.

16. Your final layout will look something like the following:

EEE 4134 VLSI I Sessional

 Page 80

17. Perform DRC, LVS and QRC for NAND2X1 as you have done in Lab 4. Generate

av_extracted view and simulate the circuit from that view to verify the functionality.

 Exercises

1. Analyse the difference between stacked and unstacked transistors in post-layout simulation and

explain why we should stack transistors with common drain/source terminals.

EEE 4134 VLSI I Sessional

 Page 81

EEE 4134 VLSI I Laboratory

Lab 6

Introduction to Hierarchical Design (2-input AND gate using 2-input NAND

gate and an inverter)

Objectives:

 To be familiar with concept of hierarchical design

 To perform Schematic Level Verification, Layout Design, DRC and LVS check

 To perform post-layout simulation of top level design

Introduction to Hierarchical Design

By this time, you should have completed layout of INVX1 and NAND2X1. Now, you will learn how

to perform hierarchical design. (cell INVX1 in this section is inverter in your case)

1. Create a new cellview of type schematic named AND2X1.

2. Instantiate NAND2X1 and INVX1 symbol from your library mylib in that schematic.

Your final schematic should look something like the following:

3. Now make a symbol of AND2X1.

4. Now create a new cellview named AND2X1_test, instantiate AND2X1 and vdd in that cell and the

final schematic should look like the following:

EEE 4134 VLSI I Sessional

 Page 82

5. Now, launch ADE L, setup Stimuli, Model library, Analysis type and Outputs to be plotted in

the same way as you have done in Lab 5. Run the simulation.

6. If functional verification is okay, then execute LaunchLayout XL from the schematic of

AND2X1.

7. Follow procedure of Lab 5 to generate instances and set display options. You will get something

like the following:

EEE 4134 VLSI I Sessional

 Page 83

8. Connect them as required and the final layout should look like the following (probably better!):

EEE 4134 VLSI I Sessional

 Page 84

9. Perform DRC, LVS and QRC as you have done in Lab 4 and Lab 5.

EEE 4134 VLSI I Sessional

 Page 85

EEE 4134 VLSI I Laboratory

Lab 7

Introduction to Verilog HDL and Quartus II
Objectives:

 To get familiar with Quartus II

 To get introduced to Hardware Description Language (HDL)

 To understand behavioral and structural Verilog descriptions

Verilog HDL

A hardware description language (HDL) is similar to a typical computer programming language

except that an HDL is used to describe hardware rather than a program to be executed on a

computer. Two HDLs are IEEE standards: Verilog HDL and VHDL (Very High Speed Integrated

Circuit Hardware Description Language).

Creating a New Project

1. Run Quartus II by clicking on the shortcut icon on desktop named Quartus II 9.0sp1 Web

Edition. A getting started window may open up. You may put a tick on ‘Don’t show this screen

again’, if you do not want this to appear again.

2. Each logic circuit or sub-circuit being designed with Quartus II software is called a project. The

software works on one project at a time and keeps all the information for that project in s single

directory (folder) in the file system. To begin a new logic circuit design, the first step is to create a

directory to hold its files. Create a folder in D:\, E:\ or F:\ drive named after your student ID.

Execute FileNew Project Wizard.

3. In the following window, change the working directory of the project to your directory (e.g.

D:\120105001) and give a name to the project as shown. Note that the project must have a name,

which is usually the same as the top-level design entity that will be included in the project.

Click Next.

EEE 4134 VLSI I Sessional

 Page 86

4. We can specify any existing file to be included in the project, if we want, in the next window.

But we will skip it for now. Click Next on the next three windows that open up. Then in the last

window, click Finish.

Creating a new Verilog HDL file under a project (Design Entry), Compilation

and Simulation

1. Execute FileNew. A window will open up. Select Verilog HDL File and click OK.

2. The following Text Editor Window will open up and you can write your Verilog code in here

and save it using the same name as the project.

3. Write your Verilog code. This example shows Verilog code for a 2to1 MUX.

EEE 4134 VLSI I Sessional

 Page 87

The syntax of Verilog code is sometimes difficult for a designer to remember. To help with the

issue, the Text Editor provides a collection of Verilog templates. The templates provides examples

of various types of Verilog statements, such as a module declaration, an always block, and

assignment statements. It is worthwhile to browse through the templates by selecting EditInsert

TemplateVerilog HDL to become familiar with this resource.

4. Click on the purple play button to start compilation of your Verilog code.

5. After successful compilation, you will get the following message. Ignore the Warnings for now.

Click OK.

If the compiler does not report zero errors, then there is at least one mistake in Verilog code. In this

case, a message corresponding to each error found will be displayed in the Messages window.

Double-clicking on an error message will highlight the statement which is affected by the error, in

the Verilog code in the Text Editor window. The user can obtain more information about a specific

error by selecting the error and pressing the F1 function key. Correct the error and recompile the

design.

6. Now, execute FileNew to create a vector waveform file which is required for simulating inputs

and outputs. Select Vector Waveform File from the list and click OK.

7. The following window will open up.

EEE 4134 VLSI I Sessional

 Page 88

8. Double-click on the white space under ‘Name|Value at 15.08 ns’. Or Right-click on that space

and select InsertInsert Node or Bus.

9. In the ‘Insert Node or Bus’ window, click Node Finder.

10. In the ‘Node Finder’ window, Click List. Make sure ‘Pins:all’ is selected under ‘Filter’.

11. Now the window will look like the following one. Click on the ‘>>’ Button.

EEE 4134 VLSI I Sessional

 Page 89

12. Now, it should appear like the following. Click OK.

13. In the following window, click OK.

EEE 4134 VLSI I Sessional

 Page 90

14. The vector waveform file will now look like the following:

Now, you can clearly see the inputs and outputs.

15. Select an input and from the left palette, click on the ‘Overwrite clock’ icon.

16. In the ‘Clock’ window, set parameters of the clock.

EEE 4134 VLSI I Sessional

 Page 91

17. Now, after setting all the input clocks, Vector Waveform File will look like the following.

Note that, the output Y is displayed as having an unknown value at that time, which is indicated by

a hashed pattern; its value will be determined during simulation.

18. Save the Vector Waveform File. It must have the same name as the Verilog file.

19. A designed circuit can be simulated in two ways. The simplest way is to assume that there is no

delay in propagation of signals through the circuit. This is called functional simulation. A more

complex way is to take all propagation delays into account, which leads to timing simulation.

Typically, functional simulation is used to verify the functional correctness of a circuit as it is being

designed. This takes much less time, because the simulation can be performed simply by using the

logic expressions that define the circuit.

Click on the blue play button and you should observe the simulated waveforms.

EEE 4134 VLSI I Sessional

 Page 92

Note there is a delay between input and outputs which simulates the real effect of gate delays. If

you are interested in only functional analysis rather than timing analysis, go through some more

steps.

20. Execute ProcessingSimulator Tool.

21. In the following window, select Functional as Simulation Mode and click on Generate

Functional Simulation Netlist.

22. After generating functional simulation netlist, the following window will appear. Click OK.

23. Click on the blue play button and you should observe the following message.

EEE 4134 VLSI I Sessional

 Page 93

24. Now observe the simulation waveforms from ProcessingSimulation Report, and note that

there is no time delay between inputs and output and the function of this code is indeed that of a

2to1 MUX.

QUESTIONS:
1. Which ones of the following identifier names are incorrect according to Verilog syntax?

2to1MUX, MUX$2to1, mux_2to1, reg, reg4bit, 130105_counter

2. What are the differences between ‘structural’ and ‘behavioral’ Verilog codes? Show an

example of each for a particular logic circuit.

EEE 4134 VLSI I Sessional

 Page 94

EEE 4134 VLSI I Laboratory

Lab 8

Combinational Logic circuit design in Verilog HDL using Quartus II
Objectives:

 To design combinational circuits with Verilog codes, and verify the codes through

simulation

 To learn about hierarchical design using Verilog HDL

Verilog codes for combinational logic circuits

Half-Adder

module half_adder(A,B,Cout,S);

input A,B;

output S, Cout;

assign S = A^B;

assign Cout = A&B;

endmodule

2-to-1 MUX

module mux21_fn(I0,I1,S,f);

input I0,I1,S;

output reg f;

always@(I0,I1,S)

begin

if (S == 0)

f = I0;

else

f = I1;

end

endmodule

Priority Encoder

module priority(W, Y, z);

input [3:0]W;

output reg [1:0]Y;

output reg z;

always @(W)

begin

z = 1;

casex (W)

4’b1xxx: Y = 3;

4’b01xx: Y = 2;

4’b001x: Y = 1;

4’b0001: Y = 0;

default: begin

z = 0;

Y = 2’bx;

end

endcase

end

endmodule

EEE 4134 VLSI I Sessional

 Page 95

Full Adder using Half-Adders

module FA_001(A,B,C,Cout,S);

input A,B,C;

output Cout,S;

wire C1,C2,S1;

HA_001 f1(A, B, C1, S1);

HA_001 f2(S1, C, C2, S);

assign Cout = C1|C2;

endmodule

module HA_001(a,b,c,s);
input a,b;

output c,s;

assign c = a&b;

assign s = a^b;

endmodule

2-to-4 Decoder

module dec2to4(W, En, Y);

input [1:0]W;

input En;

output reg [0:3]Y;

integer k;

always@(W, En)

for(k = 0; k < = 3; k = k+1)

if ((W == k) && (En == 1))

Y[k] = 1;

else

Y[k] = 0;

endmodule

EEE 4134 VLSI I Sessional

 Page 96

 Exercises

1. Explain the differences between ‘concurrent’ and ‘procedural’ statements? Show an example of

each.

2. Examine whether the following two code segments will yield different outputs. Explain your

reasoning.

3. Read the following Verilog code and find out what it does. State your reasoning.

4. Write Verilog codes for-

a) BCD Adder

b) 4-to-1 MUX using 2-to-1 MUX

c) 8-to-1 MUX using 4-to-1 MUX, 8-to-1 MUX using 2-to-1 MUX

d) 16-to-1 MUX using 8-to-1 MUX, 16-to-1 MUX using 4-to-1 MUX

e) 4-bit comparator

f) 4-bit Full-Adder using 1-bit Full-Adder modules

g) 4-bit adder/subtractor

h) 4-bit Arithmetic logic unit (ALU) with 8 functions

always@(w0,w1,s)

begin

 if(s==0)

 begin

 f=w0;

 end

 else

 begin

 f=w1;

 end

end

always@*

begin

 if(s==0)

 begin

 f=w0;

 end

 else

 begin

 f=w1;

 end

end

module ques4(w,y);

input [3:0]w;

output reg [1:0]y;

always@(w)

begin

 casex(w)

 ‘b1000:y=3;

 ‘bx100:y=2;

 ‘bxx10:y=1;

 default:y=0;

 endcase

end

endmodule

EEE 4134 VLSI I Sessional

 Page 97

EEE 4134 VLSI I Laboratory

Lab 9

RTL synthesis and Sequential Logic Circuit design in Verilog HDL using

Quartus II
Objectives:

 To get familiar with RTL Synthesis in Quartus II

 To design sequential logic circuits in Verilog HDL, and verify the codes through simulation

RTL Synthesis in Quartus II

Logic synthesis is a process by which an abstract form of desired circuit behavior), is turned into a

design implementation in terms of logic gates, by a synthesis tool. Common examples of this

process include synthesis of HDLs, including VHDL and Verilog. Some synthesis tools

generate bit-streams for programmable logic devices such as PALs or FPGAs, while others target

the creation of ASICs. Logic synthesis is one aspect of electronic design automation.

In digital circuit design, register-transfer level (RTL) is a design abstraction which models

a synchronous digital circuit in terms of the flow of digital signals (data) between hardware

registers, and the logical operations performed on those signals. Register-transfer-level abstraction

is used in hardware description languages (HDLs) to create high-level representations of a circuit,

from which lower-level representations and ultimately actual wiring can be derived.

1. Write Verilog code for a logic circuit, compile it and verify its functionality through simulation.

Suppose, you have completed all these steps for Verilog code of a half-adder.

Then you can proceed to obtain RTL view for this logic circuit.

2. Execute ToolsNetlist ViewersRTL Viewer. A window will appear and you can see the RTL

view.

As you can see, this is the logic circuit for a half-adder.

https://en.wikipedia.org/wiki/Logic_gates
https://en.wikipedia.org/wiki/Hardware_Description_Language
https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/Verilog
https://en.wikipedia.org/wiki/Bitstream
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Programmable_array_logic
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/ASIC
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Integrated_circuit_design#Digital_design
https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Hardware_register
https://en.wikipedia.org/wiki/Hardware_register
https://en.wikipedia.org/wiki/Boolean_logic
https://en.wikipedia.org/wiki/Hardware_description_language

EEE 4134 VLSI I Sessional

 Page 98

Verilog codes for sequential logic circuits

Latch

module latch01(D,clk,Q);

input D,clk;

output reg Q;

always@(D,clk)

if (clk)

Q=D;

endmodule

Flip-flop

module flipflop(D,Clock,Q);

input D,Clock;

output reg Q;

always@(posedge Clock)

Q<=D;

endmodule

Shift Register

module shift3(w,Clock,Q);

input w,Clock;

output reg [1:3]Q;

always@(posedge Clock)

begin

Q[3]<=w;

Q[2]<=Q[3];

Q[1]<=Q[2];

end

endmodule

Counter

module count4(Clock,Resetn,E,Q);

input Clock,Resetn,E;

output reg [3:0]Q;

always@(posedge Clock, negedge Resetn)

if(Resetn==0)

Q<=0;

else if (E)

Q<=Q+1;

endmodule

EEE 4134 VLSI I Sessional

 Page 99

 Exercises

1. Evaluate out the function of following logic circuit and write a Verilog code to obtain the same

logic circuit in ‘RTL Viewer’.

2. Write Verilog codes for a 4-bit up/down counter, which counts up if select pin=0 and counts

down if select pin=1.

3. Write Verilog code for a universal shift register which can shift left/right and can load data both

in parallel mode and serial mode.

4. Write Verilog code for a J-K flip-flop using D flip-flop and a T flip-flop using J-K flip-flop.

5. Synthesize already written Verilog codes to obtain RTL diagrams.

6. Write the Verilog code for a logic circuit which counts to 3 if selection input (composed of 2

bits) 𝑆1𝑆0 = 01, counts to 7 if 𝑆1𝑆0 = 10, counts to 15 if 𝑆1𝑆0 = 11. If 𝑆1𝑆0 = 00, then it halts

counting. Use positive edge-triggered counter.

7. Explain the differences between ‘synchronous’ and ‘asynchronous’ resettable flip-flops?

8. Find 10 mistakes in the following Verilog code which implements a 5-bit shift register:

9. Explain the differences between ‘blocking’ and ‘non-blocking’ assignments with examples.

module 8ques(w,clk,Q)

Parameter n=5;

input w,clk

output [n-1:1]q;

always@(posedge clk);

begin

 q[5]=w;

 q[4]=q[5];

 q[3]=q[4];

 q[2]=q[3];

 q[1]=q[2];

end

end

EEE 4134 VLSI I Sessional

 Page 100

References and Further Readings

1. CMOS VLSI Design: A Circuits and Systems Perspective (4th Edition)

by Neil Weste, David Harris

2. Fundamentals of Digital Logic with Verilog Design (3rd Edition)

by Stephen Brown, Zvonko Vranesic

3. Physical Design Essentials: An ASIC Design Implementation Perspective

By Khosrow Golshan

4. Digital VLSI Chip Design with Cadence and Synopsys CAD tools
by Erik Brunvand

5. Fully custom design tutorials of EEE Department, Hong Kong University

6. VLSI I and II Lab Manuals of EEE Department, Bangladesh University of Engineering and

Technology (BUET)

7. Custom IC Design Manual provided by University Support Team, Cadence® Design Systems,

Bangalore, India

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Neil+Weste&search-alias=books&field-author=Neil+Weste&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=David+Harris&search-alias=books&field-author=David+Harris&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Stephen+Brown&search-alias=books&field-author=Stephen+Brown&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Zvonko+Vranesic&search-alias=books&field-author=Zvonko+Vranesic&sort=relevancerank

	manual cover
	EEE 4134 lab manual REVISED

